A long exact sequence for symplectic Floer cohomology

نویسنده

  • Paul Seidel
چکیده

Let (M, ω, α) be a compact symplectic manifold with contact type boundary: α is a contact one-form on ∂M which satisfies dα = ω|∂M and makes ∂M convex. Assume in addition that [ω, α] ∈ H(M,∂M ;R) is zero, so that α can be extended to a one-form θ on M satisfying dθ = ω. After fixing such a θ once and for all, one can talk about exact Lagrangian submanifolds in M . The Floer cohomology of two such submanifolds is comparatively easy to define, since the corresponding action functional has no periods, so that bubbling is impossible. The aim of this paper is to prove the following result, which was announced in [25] (with an additional assumption on c1(M) that has been removed in the meantime).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrangian Embeddings, Maslov Indexes and Integer Graded Symplectic Floer Cohomology

We define an integer graded symplectic Floer cohomology and a spectral sequence which are new invariants for monotone Lagrangian sub-manifolds and exact isotopies. Such an integer graded Floer cohomology is an integral lifting of the usual Floer-Oh cohomology with ZΣ(L) grading. As one of applications of the spectral sequence, we offer an affirmative answer to an Audin’s question for oriented, ...

متن کامل

The Z–graded symplectic Floer cohomology of monotone Lagrangian sub–manifolds

We define an integer graded symplectic Floer cohomology and a Fintushel–Stern type spectral sequence which are new invariants for monotone Lagrangian sub–manifolds and exact isotopes. The Z–graded symplectic Floer cohomology is an integral lifting of the usual ZΣ(L) –graded Floer–Oh cohomology. We prove the Künneth formula for the spectral sequence and an ring structure on it. The ring structur...

متن کامل

Rabinowitz Floer Homology and Symplectic Homology

The first two authors have recently defined RabinowitzFloer homology groups RFH∗(M,W ) associated to an exact embedding of a contact manifold (M, ξ) into a symplectic manifold (W,ω). These depend only on the bounded component V of W \ M . We construct a long exact sequence in which symplectic cohomology of V maps to symplectic homology of V , which in turn maps to Rabinowitz-Floer homology RFH∗...

متن کامل

Rational Sft, Linearized Legendrian Contact Homology, and Lagrangian Floer Cohomology

We relate the version of rational Symplectic Field Theory for exact Lagrangian cobordisms introduced in [5] with linearized Legendrian contact homology. More precisely, if L ⊂ X is an exact Lagrangian submanifold of an exact symplectic manifold with convex end Λ ⊂ Y , where Y is a contact manifold and Λ is a Legendrian submanifold, and if L has empty concave end, then the linearized Legendrian ...

متن کامل

Localization for Involutions in Floer Cohomology

We consider Lagrangian Floer cohomology for a pair of Lagrangian submanifolds in a symplectic manifold M . Suppose that M carries a symplectic involution, which preserves both submanifolds. Under various topological hypotheses, we prove a localization theorem for Floer cohomology, which implies a Smith-type inequality for the Floer cohomology groups in M and its fixed point set. Two application...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002